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Yb(OTf)3-catalyzed cyclization of an N-silylenamine with
2-methylene-1,3-cyclohexanedione to afford a 7,8-dihydroquinolin-
5(6H)-one derivative and its application to the one-pot conversion
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Abstract—A catalytic amount of ytterbium triflate (Yb(OTf)3) promotes the cyclization of an N-silylenamine with in situ generated
2-methylene-1,3-cyclohexanedione and 2-methylenecyclohexanone to produce the corresponding 2,3-disubstituted 7,8-dihydroquin-
olin-5-one and 5,6,7,8-tetrahydroquinolin-5-one in moderate to good yields. A one-pot conversion of 7,8-dihydroquinolin-5-one to
the quinoline derivative also proceeded in good yield.
� 2005 Elsevier Ltd. All rights reserved.
A practical synthesis of polysubstituted quinolines and
their dihydro/tetrahydro quinolines has attracted con-
siderable interest in the fields of organic and pharmaceu-
tical chemistry, since this basic skeleton is widespread in
natural products and biologically active substances.1

Hence, a number of methods, including the Conrad–
Limpach–Knorr synthesis,2 the Skraup synthesis,3 and
the Friedländer synthesis,4 have been developed for
the preparation of this skeleton. However, most of these
classical methods generally require high temperatures
and strong basic/acidic conditions, which may induce
a decrease in product yield and the production of by-
products via the polymerization of carbonyl compo-
nents. Using a catalyst such as a Lewis acid, several
groups have recently developed methods for the facile
preparation of quinoline skeletons, which can be used
under relatively mild conditions.5 On the other hand,
we previously reported on the cyclization of an N-silyl-
1-azaallyl anion,6 which can easily be generated from a
functionalized silane and an aromatic nitrile in the
presence of a base,7 with 1,2-diketones, a,b-unsaturated
ketones, and tropolones, leading to the preparation of
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heterocycles, such as pyrroles, pyridines, and azaazu-
lenes.8 During our continuing studies of the synthesis
of heterocycles, we found that a combination of an
N-silylenamine, formed by quenching the 1-azaallyl
anion with water,9 and an appropriate cyclic a,b-unsatu-
rated compound leads to the production of quinoline
skeletons (Scheme 1). We report herein on the Yb(OTf)3-
catalyzed cyclization of an N-silylenamine with 2-meth-
ylene-1,3-cyclohexanedione leading to a 2,3-disubsti-
tuted 7,8-dihydroquinolin-5(6H)-one derivative.10 We
also describe the efficient one-pot conversion to a
2,3,5-trisubstituted quinoline starting from the 2,3-
disubstituted quinolin-5-one derivative.

We initially investigated the cyclization of N-silylen-
amine 1a, prepared from a functionalized silane and
benzonitrile in the presence of n-BuLi, with [(2,6-
dioxocyclohexyl)methyl]dimethylammonium chloride11

(2a), a 2-methylene-1,3-diketone precursor as a model
reaction.12 Table 1 shows the results of a search for opti-
mized conditions. When conducted in THF, benzene,
and acetonitrile, the reaction proceeded to produce the
desired quinoline derivative 3aa, but the yields were
moderate (runs 1–3). Although DMSO showed a similar
solvent effect for the cyclization, the use of DMF
resulted in the production of a complex mixture (runs
4 and 5). Interestingly, when the reaction was run in

mailto:konaka@rs.noda.tus.ac.jp


O OO
R1

N
H

R2

N

R1

R2

O

SiMe3R1

SiMe3
R2CN

+
1) n-BuLi

O

NHMe2Cl

2) H2O

N

R1

R2

- HNMe2•HCl

∆

X

HO O

NHMe2Cl

Scheme 1. Schematic method for quinoline synthesis by the cyclization of an N-silylenamine with 2-methylene-1,3-cyclohexanedione.

Table 1. Optimization of the cyclization of N-silylenamine 1a with 2-methylene-1,3-cyclohexanedione precursor 2a
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Run Additive (equiv) Solvent Temp (�C) Time (h) Yield (%)a

1 — THF Reflux 12 32
2 — PhH Reflux 12 16
3 — MeCN Reflux 12 21
4 — DMSO 100 12 38
5 — DMF 100 12 ND
6 — 1,4-Dioxane rt 12 69
7 AlCl3 (0.2) 1,4-Dioxane rt 40 37
8 AlCl3 (0.2) 1,4-Dioxane Reflux 40 73
9 Hf(OTf)4 (0.2) 1,4-Dioxane rt 40 75
10 Yb(OTf)3 (0.2) 1,4-Dioxane rt 40 78
11 Yb(OTf)3 (0.2) 1,4-Dioxane 70 40 68
12 Yb(OTf)3 (0.05) 1,4-Dioxane rt 40 84
13 Yb(OTf)3 (0.02) 1,4-Dioxane rt 40 85

aNMR yields.
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1,4-dioxane, the desired product 3aa was formed at
room temperature in 69% yield (run 6). Thus, to activate
the carbonyl group of 2-methylene-1,3-cyclohexane-
dione generated in situ, we investigated the use of a Lewis
acid as an additive. Among the compounds tested,13 in
case of AlCl3, the reaction proceeded at room tempera-
ture, and the yield of 3aa was increased to 73% under
reflux (runs 7 and 8). It is noteworthy that, when the
reaction was carried out in the presence of a catalytic
amount of Hf(OTf)4 or Yb(OTf)3,

14 the cyclization also
proceeded at room temperature to afford the corre-
sponding quinolinone derivative 3aa in good yield (runs
9 and 10). Surprisingly, even when the amount of the
ytterbium catalyst was decreased to 0.05 or 0.02 equiv
for the N-silylenamine, the catalyst showed a high cata-
lytic activity and the product 3aa was produced in excel-
lent yield (runs 12 and 13). The structure of quinolinone
3aa was confirmed by 1H and 13C NMR spectroscopy,
mass spectrometry, and elemental analysis.

To examine the general applicability of this cyclization,
reactions of various N-silylenamines with two types of 2-
methylene-1,3-cyclohexanedione (endione) precursors
were carried out under the optimized conditions and
the results are summarized in Table 2. The reaction of
N-silylenamine 1b containing an electron-donating
group on the benzene ring with endione precursor 2a
produced the corresponding quinoline 3ba in good yield
(run 2). In contrast, the reaction of enamine 1c, contain-
ing an electron-withdrawing group, resulted in a moder-
ate yield, due to the reduced nucleophilicity of the
enamine (run 3). When the reaction of 2a with N-silylen-
amine 1d containing an alkyl group as R2 was conducted
at room temperature, the product yield was low. How-
ever, at 60 �C, a satisfactory yield was obtained (run
4). Similarly, when the reaction of enamine 1e with
another heterocycle, such as a 3-methyl-5-isoxazolyl
group with endione precursor 2b having dimethyl groups
was carried out at room temperature, the yield of product
3eb was rather low. However, the yield was also
improved to 60% when the reaction was run at 60 �C
(run 8). Moreover, the reaction with an enamine having
an ester or an amide group also gave the corresponding
products in moderate to good yields (runs 9 and 10). For
example, when the reaction of enamine 1f, containing an
N,N-dimethylamide group with an endione precursor
was carried out under optimal conditions, the desired
product 3fa was obtained in 62% yield (run 9).



Table 2. Yb(OTf)3-catalyzed cyclization of N-silylenamine 1 with the 2-methylene-1,3-cyclohexanedione precursor 2 leading to quinolinone
derivative 3a
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Run N-Silylenamine 1 1,3-Diketone 2 Yield of 3 (%)

R1 R2 R3

1 2-Pyridyl Ph 1a H 2a 3aa 84
2 2-Pyridyl 4-MeO–C6H4 1b H 2a 3ba 77
3 2-Pyridyl 4-Cl–C6H4 1c H 2a 3ca 48
4 2-pyridyl n-Bu 1d H 2a 3da 34 (60)b

5 2-Pyridyl Ph 1a Me 2b 3ab 77
6 2-Pyridyl 4-MeO–C6H4 1b Me 2b 3bb 51
7 3-Methyl-5-isoxazolyl Ph 1e H 2a 3ea 64
8 3-Methyl-5-isoxazolyl Ph 1e Me 2b 3eb trace (60)b

9 CONMe2 Ph 1f H 2a 3fa 62
10 CO2t-Bu 2-Pyridyl 1g H 2a 3ga 36

aN-Silylenamine 1 (0.5 mmol), 2-methylene-1,3-diketone precursor 2 (1.2 equiv), and Yb(OTf)3 (0.02 equiv) were used in 1,4-dioxane solution
(1 mL).

b Reaction was carried out at 60 �C.
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Scheme 3. One-pot conversion to the quinoline derivative starting
from the quinolinone derivative.
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We then examined the cyclization of enamines with
2-methylene-1-cyclohexanone (enone) as a Michael
acceptor; these reactions produced tetrahydroquinoline
derivatives (Scheme 2). For example, when the reaction
of N-silylenamine 1a with enone precursor 4 was carried
out at 60 �C for 30 h, the desired tetrahydroquinoline 5a
was produced in 57% yield. While the use of an N-silyl-
enamine containing a 3-methyl-5-isoxazolyl group
decreased the yield of 5e.15

Finally, we examined the one-pot conversion16 of the
7,8-dihydroquinolinone derivative 3aa to quinoline
derivative 7aa. Quinolinone 3aa was treated with
N-bromosuccinimide (NBS) in the presence of 2,2 0-
azobis(isobutyronitrile) (AIBN) producing 8-bromi-
nated quinolinone 6aa, followed by the treatment with
p-toluenesulfonic acid in methanol without further puri-
fication, leading to the production of the corresponding
2,3,5-trisubstituted quinoline 7aa in 83% yield (Scheme
3).17

A plausible mechanism for the cyclization of the enam-
ine with 2-methylene-1,3-cyclohexanedione in the pres-
ence of Yb(OTf)3 is shown in Scheme 4. Nucleophilic
attack of the b-carbon of the enamine on the b-position
of the a,b-unsaturated carbonyl group, which is acti-
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Scheme 2. Cyclization of N-silylenamine 1 with 2-methylene-1-cyclohexanon
vated by the ytterbium salt, initially occurs to produce
intermediate 8, followed by an in situ keto-enol isomer-
ization to form the corresponding diketone intermediate
9. An intramolecular attack of nitrogen atom in inter-
mediate 9 on the activated carbonyl group then occurs
to give the cyclization product 10, followed by the elim-
ination of silanol from 10 and subsequent oxidation,
forming the desired quinolinone product 3. The reaction
N

R1

R2
dioxane

Yb(OTf)3

5a: 57%
5e: 25%

60 ˚C, 30 h
rt, 40 h

e precursor 4.



OR1

N
H

R2 SiMe3

O

O

ON
Me3Si

R1

R2

H

O

ON

Me3Si

R1

R2

N

O

OSiMe3

R1

R2

H

N

O

R1

R2

-Me3SiOH

Yb(OTf)3

[O]

Yb(OTf)3

1

2
8

9 10 3

Scheme 4. Plausible mechanism for the cyclization of the N-silyl-
enamine with 2-methylene-1,3-cyclohexanedione.
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mechanism is analogous to that for the synthesis of pyr-
idine from the N-silylenamine with a,b-unsaturated
ketones.8b,18

In summary, we demonstrate that the Yb(OTf)3-
catalyzed cyclization of an N-silylenamine with in situ
generated 2-methylene-1,3-cyclohexanedione and 2-
methylenecyclohexanone leads to a 7,8-dihydroquino-
lin-5-one derivative. The ytterbium salt functions as a
good catalyst, permitting the reaction to proceed under
mild conditions. We also succeeded in the one-pot con-
version of the quinolin-5-one derivative to the 2,3,5-tri-
substituted quinoline derivative in good yield.
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